
szandi@hit.bme.hu

S T AN D AR D C L AN G U AG E

The following notations are used:
[]--enclosed item is optional; fn--function; b--block; rtn--return; ptd--pointed;
ptr--pointer; expr--expression; TRUE--non-zero value; FALSE--zero value.

B AS I C D AT A T Y P E S

char Single character (may signed or unsigned)
unsigned char Non-negative character
short Reduced precision integer
unsigned short Non-negative reduced precision integer
int Integer
unsigned int Non-negative integer
long Extended precision integer
unsigned long Non-negative extended precision integer
float Floating point
double Extended precision floating point
long double Extended precision floating point
void No type; Used for denoting: 1) no return value from fn

2) no argument of fn 3) general pointer base

AR I T H M E T I C C O N V E R S I O N O F D AT A T Y P E S

1. If either operand is long double the other is converted to long double.
2. If either operand is double, the other is converted to double.
3. If either operand is float, the other is converted to float.
4. All char and short operands are converted to int if it can represent the original

value; otherwise it is converted to unsigned int.
5. If either operand is unsigned long the other is converted to unsigned long.
6. If the two operands are unsigned int and long and long represent all values of

type unsigned int, the common type is long; otherwise it is unsigned long.
7. If either operand is long the other is converted to long.
8. If either operand is unsigned int the other is converted to unsigned int.
9. If this step is reached, both operands must be int.

S T AT E M E N T S U M M AR Y

STATEMENT DESCRIPTION
{ local_var_decl
 statement
 ... }

Block.
The local_var_decl (local variable declara-
tions) is optional.

break; Terminates execution of for, while, do, or
switch.

continue; Skips statement that follow in a do, for, or while;
then continues executing the loop.

do
 statement
while (expr);

Executes statement until expr is FALSE;
statement is executed at least once.

expr; Evaluates expr ; discards result.
for (e1;e2;e3)
 statement

Evaluates expr e1 once; then repeatedly evaluates
e2, statement, and e3 (in that order) until e2 is
FALSE; eg: for (i=1; i<=10/; ++i) ...;
note that statement will not be executed if e2 is
FALSE on first evaluation; e1 ,e2 and e3 are
optional; e2=1 assumed when omitted.

goto label; Branches to statement preceded by label, which
must be in same function as the goto. eg.:
int Fn(void) {
 ... goto write; ...
 write: print("here am I"); ...}

if (expr)
 statement

If expr is TRUE, then executes statement;
otherwise skips it.

if (expr)
 statement1
else
 statement2

If expr is TRUE, then executes statement1;
otherwise executes statement2.

; Null statement.No effect.eg.: while (t[i++]);
return expr; Returns from function back to caller with value of

expr ; expr is omitted in void functions.
switch (expr)
 { case const1:
 statement
 ...
 break;
 case const2:
 statement
 ...
 break;
 ...
 default:
 statement
 ... }

expr (must be an integer expression) is evaluated
and then compared against integer constant exprs
const1, const2, ...
If a match is found, then the statements that follow the
case (up to next break, if supplied) will be
executed.
If no match is found, then the statements in the
default case (if supplied) will be executed.

while (expr)
 statement

Executes statement as long as expr is TRUE;
statement might not be executed if expr is FALSE
the first time it's evaluated.

T Y P E D E F I N I T I O N

typedef is to assign a new name to a data type. To use it make believe you’re
declaring a variable of that particular data type. Where you’d normally write the
variable name, write the new data type name instead. In front of everything, place
the keyword typedef. For example:
 /* define type COMPLEX */
 typedef struct
 {
 float real;
 float imaginary;
 } COMPLEX;
 /* declare variables with new type COMPLEX */
 COMPLEX c1, c2, sum;

C O N S T AN T S

char ' 'a' '\n'
char string " "hello" ""
float …f,…F (1) 7.2f 2.e-15F -1E9f .5F
double (1) 7.2 2.e-15 -1E9 .5
long double …l,…L (1) 7.2l 2.e-15l -1E9L .5L
enumeration (2) red january monday
int 17 -5 0/
long int …l,…L (3) 251l 10/0/L
unsigned int …u,…U 17u 5U 0/u 65535u
hex integer 0/x,0/X 0/xFF 0/Xff 0/xA0/0/0/l
octal int 0/ 0/777 0/10/0/U 0/573ul
NOTES:
1. Decimal point and/or scientific notation.
2. Identifiers previously declared for an enumerated type; value treated as int.
3. Or any int too large for normal int

T Y P E Q U AL I F I E R S

const Constant object, cannot be altered by the program.
volatile External hardware or software can alter the variable, no

optimalization.

O P E R AT O R S

OPERATOR DESCRIPTION EXAMPLE ASSOCIATION
++ Postincrement ptr++
-- Postdecrement count--
[] Array element ref values [10/] ����

() Function call sqrt (x)
. Struct member ref child.name
-> Ptr to struct member child_ptr->name
sizeof Size in bytes sizeof child
++ Preincrement ++ptr
-- Predecrement --count
& Address of &x
* Ptr indirection *ptr ⇐⇐⇐⇐
+ Unary plus +a
- Unary minus -a
~ Bitwise NOT ~0/77
! Logical negation ! ready
(type) Type conversion / casting (float) total/n
* Multiplication i * j
/ Division i / j ����

% Modulus i % j
+ Addition value + i ����

- Subtraction x - 10/0/
<< Left shift byte << 4 ����

>> Right shift i >> 2
< Less than i < 10/0/
<= Less than or equal to i <= j ����

> Greater than i > 0/
>= Greater than or eq to count >= 90/
== Equal to result == 0/ ����

!= Not equal to c != EOF
& Bitwise AND word & 0/77 ����

^ Bitwise XOR word1 ^ word2 ����

| Bitwise OR word | bits ����

&& Logical AND j>0/ && j<10/ ����

|| Logical OR i>80/ || ready ����

? : Conditional operator a>b ? a : b
If a greater than b then
expr=a else b

⇐⇐⇐⇐

= *= /=
%= += -=
&= ^= |=
<<= >>=

Assignment operators count += 2
It is equal to
count=count+2

⇐⇐⇐⇐

, Comma operator i=10/ , j=0/ ����

NOTES:
Operators are listed in decreasing order of precedence.
Operators in the same box have the same precedence.
Associativity determines: � grouping; � order of evaluation for operands with
the same precedence:
(eg: a = b = c; is grouped right-to-left, as: a = (b = c);).

P R E P R O C E S S O R S T AT E M E N T S

STATEMENT DESCRIPTION

#define id text text is substituted for id wherever id later appears
in the program; (eg: #define BUFFERSIZE 512) If
construct id(a1,a2,…) is used, arguments
a1,a2,…will be replaced where they appear in text by
corresponding arguments of macro call (eg:
#define max(A,B) ((A)>(B)?(A):(B))means,
that x=max(p+q,r+s) macro will be substituted for
x=(p+q)>(r+s)?(p+q):(r+s) in the program text)

#undef id Remove definition of id.
#if expr

 ...

#endif

If constant expression expr is TRUE, statements up to
#endif will be processed, otherwise they will not be

#if expr

 ...

#else

 ...

#endif

If constant expression expr is TRUE, statements up to
#else will be processed, otherwise those between
the #else and #endif will be processed

#ifdef id

 ...

#endif

If id is defined (with #define or on the command
line) statements up to #endif will be processed;
otherwise they will not be (optional #else like at
#if)

#ifndef id

 ...

#endif

If id has not been defined, statements up to #endif
will be processed; (optional #else like at #if).

#include "file" Inserts contents of file in program; look first in same
directory as source program, then in standard places.

#include <file> Inserts contents of file in program; look only in
standard places.

#line n "file" Identifies subsequent lines of the program as coming
from file, beginning at line n; file is optional.

NOTES:
Preprocessor statements can be continued over multiple lines provided each line to
be continued ends with a backslash character (\). Statements can also be nested.

S T O R AG E C L AS S E S

STORAGE
CLASS

DECLARED CAN BE
REFERENCED

INIT
WITH

NOTES

static outside fn anywhere in file constant expr 1
inside fn/b inside fn/b constant expr 1

extern outside fn anywhere in file constant expr 2
inside fn/b inside fn/b cannot be init 2

auto inside fn/b inside fn/b any expr 3
register inside fn/b inside fn/b any expr 3,4,6
(omitted) outside fn anywhere in file or

other files with ext.
declaration

constant expr 5

inside fn/b inside fn/b any expr 3,6
NOTES:
1. Init at start of program execution; default is zero.
2. Variable must be defined in only one place w/o extern.
3. Variable is init each time fn/b is entered; no default value.
4. Register assignment not guaranteed; restricted (implementation dependent)

types can be assigned to registers. & (addr. of) operator cannot be applied.
5. Variable can be declared in only one place; initialized at start of program

execution; default is zero.
6. Defaults to auto.

E X P R E S S I O N S

An expression is one or more terms and zero or more operators. A term can be
- name (function or data object)
- constant
- sizeof(type)
- (expr)

An expression is a constant expression if each term is a constant.

AR R AY S

A single dimension array aname of n elements of a specified type type and
with specified initial values (optional) is declared with :
 type aname[n] = { val1, val2, … };
If complete list of initial values is specified, n can be omitted.
Only static or global arrays can be initialized.
Char arrays can be init by a string of chars in double quotes.
Valid subscripts of the array range from 0/ to n-1.
Multi dimensional arrays are declared with :
 type aname[n1][n2]… = { init_list };
Values listed in the initialization list are assigned in 'dimension order' (i.e. as if
last dimension were increasing first). Nested pairs of braces can be used to
change this order if desired.
EXAMPLES:
 /* array of char */
 static char hisname[] = {"John Smith"};
 /* array of char ptrs */
 static char *days[7] =
 {"Sun", "Mon", "Tue",
 "Wed", "Thu", "Fri", "Sat"};
 /* 3x2 array of ints */
 int matrix[3][2] = { {10/,11},{-5,0/}, {11,21} };
 /* array of struct complex */
 struct complex sensor_data[10/0/];

P O I N T E R S

A variable can be declared to be a pointer to a specified type by a statement of
the form:
 type *name;
EXAMPLES:
 /* numptr points to floating number */
 float *numptr;
 /* pointer to struct complex */
 struct complex *cp;
 /* if the real part of the complex struct
 pointed to by cp is 0/.0/ */
 if (cp->real == 0/.0/) {…}
 /* ptr to char; set equal to address of
 buf[25] (i.e. pointing to buf[25]) */
 char *sptr = &buf[25];
 /* store 'c' into loc ptd to by sptr */
 *sptr = 'c';
 /* set sptr pointing to next loc in buf */
 ++sptr;
 /* ptr to function returning int */
 int (*fptr) ();

F U N C T I O N S

Functions follow this format :
 ret_type name (arg1_decl, arg2_decl, ...)
 {
 local_var_decl
 statement
 ...
 return value;
 }
Functions can be declared extern (default) or static.
static functions can be called only from the file in which they are defined.
ret_type is the return type for the function, and can be void if the function
returns no value.
EXAMPLE :
/* fn to find the length of a character string */
 int strlen (char *s)
 {
 int length = 0/;
 while (*s++)
 ++length;
 return length;
 }

S T R U C T U R E S

A structure sname of specified members is declared with a statement of the form:
 struct sname
 {
 member_declaration;
 ...
 } variable_list;
Each member declaration is a type followed by one or more member names.
An n-bit wide field mname is declared with a statement of the form:
 type mname:n;
If mname is omitted, n unnamed bits are reserved; if n is also zero, the next field
is aligned on a word boundary. variable_list (optional) declares
variables of that structure type.
If sname is supplied, variables can also later be declared using the format:
 struct sname variable_list;
EXAMPLE:
 /* declare complex struct */
 struct complex
 {
 float real;
 float imaginary;
 };
 /* define structures */
 struct complex c1 = { 5.0/ , 0/.0/ };
 struct complex c2, csum;
 c2 = c1; /* assign c1 to c2 */
 csum.real = c1.real + c2.real;

U N I O N S

A union uname of members occupying the same area of memory is declared
with a statement of the form :
 union uname
 {
 member_declaration;
 …
 } variable_list;
Each member declaration is a type followed by one or more member names;
variable_list (optional) declares variables of the particular union type. If
uname is supplied, then variables can also later be declared using the format:
 union uname variable_list;
NOTE: unions cannot be initalized.

26-Feb-99

E N U M D AT A T Y P E S

An enumerated data type ename with values enum1,enum2,… is declared
with a statement of the form :
 enum ename { enum1, enum2, … } variable_list;
The optional variable_list declares variables of the particular enum type.
Each enumerated value is an identifier optionally followed by an equals sign and
a constant expression. Sequential values starting at 0/ are assigned to these
values by the compiler, unless the enum=value construct is used.
If ename is supplied, then variables can also be declared later using the format:
 enum ename variable_list;
EXAMPLES:
 /* define boolean */
 enum boolean { false, true };
 /* declare variable and inicialize value */
 enum boolean done = false;
 if (done==true) {…} /* test value */

F O R M AT T E D O U T P U T

printf is used to write data to standard output (normally, your terminal). To
write to a file, use fprintf; to 'write' data into a character array, use
sprintf. The general format of a printf call is :
 printf (format, arg1, arg2, …)
where format is a character string describing how arg1,arg2,… are to be
printed. The general format of an item in the format string is :
 %[flags][size][.prec]type
flags:
- left justify value (default is right justify)
+ precede value with a + or - sign
space precede positiv value with a space
precede octal value with 0/, hex value with 0/x; force display of

decimal point for float value, and leave trailing zeros for type g or G
0/ display leading zeros
size : is a number specifying the minimum size of the field; * instead of
number means next arg (must be type of int) to printf specifies the size
prec : is the minimum number of digits to display for ints; number of decimal
places for e and f; max. number of significant digits for g; max. number of chars
for s; * instead of number means next arg (int) to printf specifies the precision
type : specifies the type of value to be displayed per the following character codes:
arg dec. oct. hex. HEX. ±d.dd ±d.dde±dd
short hd
unsigned short hu ho hx hX default precision is
int d 6 decimal digits
unsigned int u o x X
long ld
unsigned long lu lo lx lX
float, double f e
long double Lf Le

i same as d
p a pointer, void * (implementation-defined)
n store how many characters have been displayed, arg is int *, no output
hn store how many characters have been displayed, arg is short *, no output
ln store how many characters have been displayed, arg is long *, no output
E same as e except display E before exponent instead of e
g a double in f or e format, whichever takes less space w/o losing precision
G a double in f or E format, whichever takes less space w/o losing precision
c a char
s a null-terminated char string (null not required if precision is given)
% % itself
NOTES:
characters in the format string not preceded by % are literally printed;
floating point formats display both floats and doubles;
integer formats can display chars, short ints or ints.
EXAMPLE:
 printf("%o + %#X is %+0/*d",31,31,5,31+31);

Produces: 37 + 0/X1F is +0/0/62
 printf("%f %g %#.0/f %.2g",3.14,3.14,3.14,3.14);

Produces: 3.140/0/0/0/ 3.14 3. 3.1

F O R M AT T E D I N P U T

scanf is used to read data from standard input. To read data from a particular
file, use fscanf. To 'read' data from a character array, use sscanf. The
general format of a scanf call is :
 scanf (format, arg1, arg2, …)
where format is a character string describing the data to be read and
arg1,arg2,… point to where the read-in data are to be stored. The format of
an item in the format string is :
 %[*][size]type
* : specifies that the field is to be skipped and not assigned (i.e., no
corresponding ptr is supplied in arg list)
size : a number giving the maximal size of the field
type : indicates the type of value being read :
arg is ptr to dec. oct. hex. HEX. ±d.dd or ±d.dde±dd
short hd
unsigned short hu ho hx hX
int d
unsigned int u o x X
long ld
unsigned long lu lo lx lX
float f,e,E,g,G
double lf,le,lE,lg,lG
long double Lf,Le,LE,Lg,LG

i same as d
p pointer (same as in printf), arg type is void **
n store number of chars have been matched, arg is int * , no input
hn store number of chars have been matched, arg is short * , no input
ln store number of chars have been matched, arg is long * , no input
c single character, arg is char[]
s string of chars terminated by a white-space character, arg is char[]
% % itself
[…] string of chars terminated by any char not enclosed between the [and];

if first char in brackets is ^, then following chars are string terminators
instead.

NOTES:
A scan function returns when:
− It reaches the terminating null in the format string.
− It cannot obtain additional input characters to scan.
− A conversion fails.
Any chars in format string not preceded by % will literally match chars on input
(e.g. scanf("value=%d",&ival); will match chars "value=" on
input, followed by an integer which will be read and stored in ival.
Whitespace in format string matches the longest possible sequence of the zero
or more whitespace characters on input.
EXAMPLE:
 sscanf("12Free of charge 21",
 "%X%c%*[^ab]%2s%d",&i,&c,text,&j);
will return 3 and i=30/3, c='r', text="ar"; j remains unchanged.

E S C AP E C H AR AC T E R S

\b Backspace (BS) \\ Backslash (\)
\f Form feed (FF) \nnn Octal character value (n: 0/-7)
\n Newline (NL) \xhh Hexadecimal character value
\r Carriage return (CR) (h: 0/-9,a-f,A-F)
\t Horizontal tab (HT) \" Double quote (")
\v Vertical tab (VT) \' Single quote (')
\a Bell (BEL) \? Question mark (?)

L I B R AR Y F U N C T I O N S AN D M AC R O S

Function argument types :
int c; /* char */ int n,n1,n2;
unsigned int u; long l,l1,l2;
double d,d1,d2; char *s,*s1,*s2;
FILE *f; size_t su,su1,su2;
time_t tl,tl1,tl2; fpos_t fl;
void *v,*v1,*v2; va_list ap;
char and short are converted to int when passed to functions;
float is converted to double.
/…/ return code on error (…) return code on success
Character classification ctype.h
int isalnum(c) TRUE if c is any alphanumeric char
int isalpha(c) TRUE if c is any alphabetic char
int iscntrl(c) TRUE if c is any control char
int isdigit(c) TRUE if c is any decimal digit 0/-9
int isgraph(c) TRUE if c is any printable char except space
int islower(c) TRUE if c is any lowercase char
int isprint(c) TRUE if c is any printable char including. space
int ispunct(c) TRUE if c is neither a control nor alphanum. char
int isspace(c) TRUE if c is one of the whitespace characters:

space, FF, NL, CR, HT, VT
int isupper(c) TRUE if c is any uppercase char
int isxdigit(c) TRUE if c is any hexadecimal digit 0/-9,A-F,a-f
int tolower(c) convert c to lowercase
int toupper(c) convert c to uppercase
Data conversion stdlib.h
double atof(s) ASCII to double conversion /HUGE_VAL,0/ /
int atoi(s) ASCII to int conversion
long atol(s) ASCII to long conversion
double
strtod(s1,*s2)

ASCII to double conversion; on return, *s2
points to char in s1 that terminated the scan/0/ /

long
strtol(s1,*s2,n)

ASCII to long conversion, base n; on return, *s2
points to char in s1 that terminated the scan /0/ /

unsigned long
strtoul(s1,*s2,n)

ASCII to unsigned long conversion (see
strtol)

File handling and input/output stdio.h
void clearerr(f) reset error (incl. EOF) on file
int fclose(f) close file /EOF/ (0/)
int feof(f) TRUE if end-of-file on f
int ferror(f) TRUE if I/O error on f
int fflush(f) write buffered output to f /EOF/ (0/)
int fgetc(f) read next char from f /EOF/
int fgetpos(f,*fl) get the file position indicator to fl/TRUE/(0/)
char *fgets(s,n,f) read n-1 chars from f unless newline or end-

of-file reached; newline is stored in s if read
/NULL/

FILE *fopen(s1,s2) open file s1, mode s2: "w"=write, "r"=read,
"a"=append, "b"=binary, "+"=update /NULL/

int fprintf(f,s,…) write args to f using format s (see printf)
int fputc(c,f) write c to f ; rtn c /EOF/
int fputs(s,f) write s to f /EOF/ (≥0/)
size_t fread
(v,su1,su2,f)

read su2 data items from f into v; su1 is
number bytes of each item /0/ / (bytes read/su1)

FILE
*freopen(s1,s2,f)

close f and open s1 with mode s2 (see
fopen)

int fscanf(f,s,…) read args from f using format s (see scanf)
int fseek(f,l,n) position file pointer; if n=SEEK_SET, l is offset

from beginning; if n=SEEK_CUR, from current
pos.; if n=SEEK_END, from end of file /TRUE/ (0/)

int fsetpos(f,*fl) sets the file position to fl (0/) /TRUE/
long ftell(f) current offset from the beginning of the file /-1L/
size_t fwrite(v,su1,
su2, f)

write su2 data items to f from v; su1 is number
of bytes of each item /0/ / (bytes written/su1)

int getc(f) read next char from f /EOF/
int getchar() read next char from stdin /EOF/
char *gets(s) read chars into s from stdin until newline or

eof reached; newline not stored /NULL/
void perror(s) write s followed by descr. of last err. to stderr
int printf(s,…) write args to stdout per format s; return

number of characters written /<0/ /
int putc(c,f) write c to f ; rtn c /EOF/
int putchar(c) call fputc(c,stdout)
int puts(s) write s and newline to stdout /EOF/ (≥0/)
int remove(s) removes the file named s (0/) /TRUE/
int rename(s1,s2) rename the file named s1 to file s2 (0/) /-1/
void rewind(f) rewind f; calls fseek(f,0/L,SEEK_SET)
int scanf(s,…) read args from stdin per format s; return

number of values read or EOF
void setbuf(f,s) if s<>NULL calls

setvbuf(f,s,_IOFBF,BUFSIZ) otherwise
calls setvbuf(f,NULL,_IONBF,BUFSIZ)

int
setvbuf(f,s,n,su)

sets buffering mode for f, the buffer is s with
size su, n must be one of _IOFBF (full
buffering), _IOLBF (line buffering), _IONBF (no
buffering) (0/) /TRUE/

int
sprintf(s1,s2,…)

write args to buffer s1 per format s2 (see
printf)

int sscanf(s1,s2,…) read args from s1 per format s2; (see scanf)
FILE *tmpfile() create temporary file, open with "wb+" mode;

return ptr to it /NULL/
char *tmpnam(s) generate temporary file name; place result in s if

s<>NULL (L_tmpnam size buffer); rtn ptr to name
int ungetc(c,f) insert c back into file f (as c wasn't read) /EOF/
int vfprintf(f,s,ap) see vprintf and fprintf
int vprintf(s,ap) same as printf with variable argument list ap;

va_start must be called before and va_end
after the function

int
vsprintf(s1,s2,ap)

see vprintf and sprintf

Math math.h,stdlib.h(*)
int errno (errno.h) detects range error (ERANGE) and domain error (EDOM).
int abs(n) * absolute value of n
double acos(d) arccosine of d /0/ / [0/ ,π]
double asin(d) arcsine of d /0/ / [-π/2,+π/2]
double atan(d) arctangent of d [-π/2,+π/2]
double atan2(d1,d2) arctangent of d1/d2 [-π,+π]
double ceil(d) smallest integer not less than d
double cos(d) cosine of d (d in radians)
double cosh(d) hiperbolic cosine of d
div_t div(n1,n2) * computes the quotient (.quot) and remainder

(.rem) of division n1/n2
double exp(d) e to the d-th power /HUGE_VAL/
double fabs(d) absolute value of d
double floor(d) largest integer not greater than d
double fmod(d1,d2) d1 modulo d2
double frexp(d,*n) returns x in interval [½,1), and d=x*2n
long labs(l) * absolute value of l

double ldexp(d,n) d*2n

ldiv_t ldiv(l1,l2)* computes the quotient (.quot) and remainder
(.rem) of division l1/l2

double log(d) natural log of d /0/ /
double log10/(d) log base 10/ of d /0/ /
double modf(d1,*d2) rtn x such that d1=x+d2, x in [0,1), d2 integer
double pow(d1,d2) d1 to the d2-th power /0/ ,HUGE_VAL/
int rand() * random number in range [0/ ,RAND_MAX]
double sin(s) sine of d (d in radians)
double sinh(d) hyperbolic sine of d
double sqrt(d) square root of d /0/ /
void srand(u) * reset random number generator to u
double tan(d) tangent of d (radians) /HUGE_VAL/
double tanh(d) hyperbolic tangent of d
Memory allocation and manipulation string.h,stdlib.h(*)
void *calloc(su1,
su2) *

allocate space for su1 elements; each su2
bytes large and set to 0/ /NULL/

void free(v) * free block of space pointed to by v
void *malloc(su) * allocate su bytes and return ptr to it /NULL/
void
*memchr(v,c,su)

return ptr in v of 1st incident of c, looking at su
unsigned chars at most, or NULL if not found

int
memcmp(v1,v2,su)

rtn <0/, =0/, >0/ if v1 is lexicographically <,= or
>v2, comparing up to su unsigned chars

void
*memcpy(v1,v2,su)

copy su chars from v2 to v1 (v1, v2 should not
overlap); return v1

void *memmove
(v1,v2,su)

copy su chars from v2 to v1 (v1, v2 can
overlap); return v1

void
*memset(v,c,su)

set su unsigned chars ptd to by v
to value c; return v

void *realloc(v,su)
*

change the size of block v to su and returns ptr
to it /NULL/

Program contol setjmp.h,stdlib.h(*)
void assert(iexpr) if NDEBUG is not defined and iexpr is FALSE

then write a diagnostic message to stderr and
calls abort(); use assert.h header

void abort() * couse abnormal program termination
int atexit(void
(*func)(void)) *

register func to be called by exit (0/) /TRUE/

void exit(n) * terminate execution, returning exit status n
char *getenv(s) * rtn ptr to value of environment name s /NULL/
void longjmp
(jmp_buf env,n)

restore environment from env; causes setjmp
to return n if supplied or 1 if n=0/

int setjmp(jmp_buf
env)

save stack environment in env; (0/) (see
longjmp)

int system(s) * execute s as if it were typed at terminal; returns
exit status /-1/

Searching and sorting stdlib.h
void *bsearch(void
*key, void *base,
su1, su2,
int (*cmp)(void
*ck, void *ce))

binary search in array base (su1 elements,
each su2 bytes large), using function cmp for
comparison; cmp must return negativ if ck<ce,
0/ if ck=ce, positiv if ck>ce

void qsort (void
*base, su1, su2,
int (*cmp)(void
*ck, void *ce))

quick sort of array base (su1 elements, each
su2 bytes large), using function cmp for
comparison; (for cmp see bsearch)

String manipulation string.h
char *strcat(s1,s2) concatenate s2 to end of s1; rtn s1
char *strchr(s,c) return ptr to 1st occurence of c in s /NULL/
int strcmp(s1,s2) compare s1 and s2; returns <0/, 0/, >0/ if s1

lexicographically <s2, =s2, >s2
char *strcpy(s1,s2) copy s2 to s1; rtn s1
size_t
strcspn(s1,s2)

search the first s1[i] that equals any element
of s2; rtn i

char *strerror(n) return a pointer to string that message
corrensponds to errorcode n

size_t strlen(s) length of s (not incl. NULL)
char *strncat
(s1,s2,su)

concatenate at most su chars from s2 to end of
s1; rtn s1

int
strncmp(s1,s2,su)

compare at most su chars from s1 to s2; (see
strcmp)

char
*strncpy(s1,s2,su)

copy at most su chars from s2 to s1; if s2 is
shorter than su, null bytes are appended; rtn s1

char
*strpbrk(s1,s2)

searches the first s1[i] that equals any
element of s2; return &s1[i]

char *strrchr(s,c) return pointer to last occurence of c in s /NULL/
size_t
strspn(s1,s2)

search the first s1[i] that equals none of the
element of s2; rtn i

char *strstr(s1,s2) search the first substring in s1 that matches s2
char *strtok(s1,s2) break s1 into tokens delimited by s2; from the

second call s1=NULL; s2 may different from call
to call; return the ptr to token or NULL

Time time.h
char *asctime(*tm) convert tm struct to string; rtn ptr to it
clock_t clock() CPU time in 1.0/ /CLOCKS_PER_SEC seconds

since program startup /-1/
char *ctime(*tl) convert time ptd to by tl to string; rtn ptr to it
double
difftime(tl1,tl2)

difference tl1-tl2 in seconds

struct tm
*gmtime(*tl)

convert time pointed to by tl to Universal Time
Coordinated (UTC) (formerly GMT)

struct tm
*localtime(*tl)

convert time pointed to by tl to local time

time_t mktime
(struct tm *tptr)

alters tptr to represent an equivalent encoded
local time /-1/

size_t strftime(
s1, su, s2,
struct tm *tptr)

write tptr to buffer s1 per format s2; buffer
size is su; rtn number of characters stored /0/ /

time_t time(*tl) returns time & date in seconds; if tl<>NULL,
time is stored in *tl; convert time returned with
ctime, localtime or gmtime /-1/

Variable-length arguments stdarg.h
type
va_arg(ap,type)

get next argument; ap must be initialized by
va_start; the argument type must be type

void va_end(ap) end variable argument list
void
va_start(ap,pN)

start variable argument list; pN is the parameter
just before the (...) in the function prototype

C O M M AN D L I N E AR G U M E N T S

Arguments typed in on the command line when a program is executed are
passed to the program through argc and argv.
argc is a count of the number of arguments +1;
argv is an array of character pointers that point to each argument.
argv[0/] points to the name of the program executed.
argv[argc] equal NULL pointer.
Use sscanf to convert arguments stored in argv to other data types. For
example:
 check phone 35.79
starts execution of a program called check, with :
 argc = 3
 argv[0/] = "check" argv[2] = "35.79"
 argv[1] = "phone" argv[3] = NULL
To convert number in argv[2], use sscanf. For example :
 int main (int argc, char *argv[])
 { float amount;
 … sscanf (argv[2],"%f",&amount); … }

